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Codigestion concept
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Gas potential of different waste
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Typical Biogas Plant

(Single Stream Digestion)
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Typical Biogas Plant

(Multi-stream Co-digestion)
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Results: 2-Phase versus 1-Phase Treatment

Single Phase Two Phase
131° F 155° F + 131° F
(55° C) (68° C + 55° C)

\/S reduction

Methane yield

43% (2%)

239 (5)
ml/(g VS x d)

47% (1%)

259 (4)
ml/(g VS x d)

Standard deviation in brackets



A New Concept for the Anaerobic Treatment of
the Organic Fraction off Municipal Solid Waste
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Reasons for Two Phase Anaerobic
Digestion System

Removal of ammonia by means of stripping.
» No accumulation of NH; in recirculation

Sanitation of the waste material.
» Safe fertilizer product

Higher conversion of xenobiotics by adapted hyperthermophilic cultures
due to higher solubility of hydrophobic pollutants.
» Safe fertilizer product

Enhanced hydrolysis of recalcitrant organic matter
» Increased VS reduction
» Less sludge production



What About Xenobiotics?

> Aerobic Digestion Methods can destroy
simple xenobiotic compounds, but not
chlorinated & other recalcitrant
compounds

> IThermophilic anaerobic digestion destroys
recalcitrant xenobiotic compounds more
efficiently/effectively than mesophilic
anaerobic digestion



Phthalic Acid Esters

I o
DEHP DBP

(Di-(2-ethylhexyl)phthalate) (Dibutylphthalate)

» Water solubility

0.6 -2.6-10- mg/l 1.5 - 13 mg/l
Kow =7.0-7.8 Kow =3.7-52




Effluent as Fertilizer
I B |

Threshold values of xenobiotic compounds
in organic waste for the use as fertilizer

£t Threshold
Xenobiotic compound (mg/kg-TS)
P AH Polycyclic aromatic 3
hydrocarbons
DEHP Di-(2-ethylhexyl)phthalate 5Y0)
Nonyl phenol +
NPE ethoxylates 1 0
LAS Linear alkyl benzene 1 300

sulphonates
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Results: 2-Phase versus 1-Phase Treatment

Single Phase Two Phase
131° F 155° F + 131° F
(55° C) (68° C + 55° C)

\/S reduction

DEHP
CONVEersion

67% (5%)

No conversion

83% (2%)

36% (2%)

Standard deviation in parentheses



Table US-1. Requirements for Biosolids Classifications

USA 40 CFR Part 503,

Subsection 503.32

Requirement

Class A Processes and
site restrictions

Class A analysis

Class B processes
and site restrictions

Class B analysis

general (in addition to
specifics of process
and analysis
ilgematives)

no site restrictions

< 1000 MPN/g DS fecal
coliform density or <3/4
MPN/g DS Salmonella

Alternative 1

time-temperature
relation depending on
solids percentage

Alternative 2

pH > 12, duration 72
hours including T >
520C for >12 hours,
drying to > 50% solids

site restriction
durations depend on
land use

Alternative 3

Alternative 4

Alternative 5

Alternative 6

Processes to further
reduce pathogens
(PFRP)

_|treatment

< 1/4 PFU/g DS enteric
virus and < 1/4 viable
helminth ovum/g DS in
sludge either before or
after pathogen

< 1/4 PFU/g DS enteric
virus and < 1/4 viable
helminth ovum/g DS in
sludge solids at last
point of processor

|access

equivalent to PFRP

Processes to further
reduce pathogens
(PFRP)

density

<2,000,000 MPN/g
DS fecal coliform

equivaqalent to PSRP
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Reduction ini Bovine Enterovirus
In buffer at 131° F (55° C)

log titer(TCID/200ul)
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Reduction in Bovine Enterovirus in
anaerobic reactors at 131° F (55°C)

log titer (TCID/200ul)
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Reduction of Parvovirus in
buffer at 131° F (55° C)
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Bioethanol Concept

Wet Oxidation
In: Wheat Straw

Wet oxidation
195C, 128ar0, ...

Semi-Solid Fermentation

(SSF Fermentation)
In: Enzyme
BIOGAS
ETHANOL
Xylose Fermentation
338F fermentation
Anaerobic (Glucose) Out: Ethanol

lrealmenl

Anaerobic Treatment
In: Manure
Out; Biogas

Thermophilic
Fermentation




Optimal Bioconversion

Biomass converted

Biogas produced

The extra step producing
methane ensures optimal
utilization of the biomass.

What 1s not transformed
into ethanol can be
converted into methane



Anaerobic Treatment

Inhibitor - Removal

Outlet
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® 2-Furoic Acid B Vanillic Acid A Syringol
@ 4-Hydroxybenzaldehyde M  Homovanillic Acid A  Acetovanillone
®  4-Hydroxybenzoic Acid B  Syringic Acid A Acetosyringone




Limited control

Suppliers

Reactor After-storage
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Optimized control

optimum
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VFA sensor
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Conclusion

The future challenges of AD is related to both gas production
and effluent quality

Mesophilic AD is less efficient than thermophilic AD

Thermophilic digestion has had a difficult past but the future is
bright

Start-up of thermophilic digesters can be rapid even without
seed

Extreme thermophilic digestion Is possible and can ensure much
better sanitation of the material

Co-digestion is a way to obtain a higher gas production and to
reuse various organic wastes such as MSW, food processing
wastes and industrial waste

Extreme thermophilic digestion cani increase the VS destruction
and improve the effluent quality:

On-line, real-time control systems can greatly increase stability
and over-all perfermance of thermophilic AD systems
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